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ALGEBRAIC TURBULENCE MODELS FOR THE 

FLOWS USING UNSTRUCTURED GRIDS 
COMPUTATION OF TWO-DIMENSIONAL HIGH-SPEED 

PHILIPPE ROSTAND 
INRIA-Menusin, BPl05,  78153 Le Chesnay Cedex, France 

SUMMARY 
The incorporation of algebraic turbulence models in a solver for the 2D compressible Navier-Stokes 
equations using triangular grids is described. A practical way to use the Cebec-Smith model and to modify it 
in separated regions is proposed. The ability of the model to predict high-speed perfect-gas boundary layers is 
investigated from a numerical point of view. 
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1. INTRODUCTION 

Solving the laminar compressible Navier-Stokes equations numerically for practical configur- 
ations is now within reach.’.’ Flows around complete aircraft, including an impressive high- 
Mach-number flow around a ~ h u t t l e , ~  have been successfully computed. However, the complexity 
of the configurations of industrial interest makes these computations a challenging task, even 
when using modern supercomputers. The results obtained are for steady and laminar flows and 
still make full use of the computer capability available. This, together with the concern of 
affordability, is why cost is the major issue when more realistic physical models are taken into 
account. It is well known that most configurations of interest are at least locally turbulent, and 
that the modelling of this turbulence is critical for the reliability of the computations. Thus a cheap 
and reasonably accurate turbulent closure model is an unavoidable part of a compressible viscous 
code. 

The study of the second part of the re-entry of the European shuttle Hermes prompts interest in 
high-speed moderate Reynolds flows. With Mach numbers ranging from 5 to 10, real-gas effects 
can be neglected in a first approximation. The purpose of the study is not to predict the details of 
the flow, which are probably beyond reach anyway, but to give reasonable estimates (say k 10%) 
of the pressure, friction and heat transfer, and, through these, of the flight performance of the 
shuttle. 

An implicit algorithm to solve the 2D (3D) compressible Euler equations on unstructured 
triangular (tetrahedral) grids has been developed in recent It is based on a finite volume 
approximation of the equations in conservation form, using control volumes defined by the 
medians of the triangle (tetrahedron) surrounding each node, and Osher’s flux formula.6 It has 
been extended to solve the Reynolds-averaged Navier-Stokes equations and shown to be able to 
compute two-dimensional laminar boundary layers efficiently and accurately.’ The purpose of 
this work is to include in it some relevant turbulence model. 
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Our concern here will be two-dimensional compressible boundary layers and compression 
corners, which are the two relevant simple flows (see Figure 1). Numerous turbulence models have 
been proposed to solve these problems, and a review would make a (tough) paper by itself. 
However, they can be classified by the number of extra PDEs they introduce, by the order of the 
closing relation and by its linearity, i.e. by whether the model is of the eddy viscosity type or not. 
Non-linear models have been shown to be an improvement over linear ones in a number of 
situations (see e.g. Reference 8), but they will not be our concern here, since we restrict ourselves to 
two-dimensional situations in this first approach. 

The choice is then on the number of PDEs one wishes to solve; it is our opinion that one- and 
two-equation models offer no significant improvement over algebraic models for computations of 
the near-wall flows which are our concern. Consequently, we will restrict ourselves to algebraic 
models, in which we may later introduce some streamwise history effect through an explicit 
relaxation model, patterned after that of Shang and Hankey.' For attached flows the models of 
Cebeci and Smith" and of Baldwin and Lomax" have been extensively tested and shown to 
perform well in the incompressible, transonic and supersonic regimes. 2 ~ 1 3  The Baldwin-Lomax 
model has the advantage that it does not require calculation of the boundary layer thickness and 
has been widely used and tested. However, for detached or near-detachment boundary layers, 
both the Cebeci-Smith and the Baldwin-Lomax models give erroneous results; this is due to the 
fact that they both rely on Prandtl's mixing-length theory, which is no longer relevant after 
detachment. In separated regions we will use another algebraic model, introduced by G ~ l d b e r g , ' ~  
which prescribes analytically the values of k and E in a separation bubble. 

All these models have been previously used and validated. The aim of this paper is twofold. 
First, we want to show that turbulent flows can be efficiently calculated on unstructured grids 
using algebraic models; .this is not straightforward because the direction normal to the wall is no 

Compression corner 

\ Turbulent boundary layer 

Figure 1 
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longer a co-ordinate axis, so that non-local effects are not easy to compute. The details of the 
implementation are given in Section 2. Secondly, we want to investigate how well these algebraic 
models, which were defined after incompressible theories and thus ignore density fluctuations, will 
perform for high-speed flows. In Section 3 we will compute a boundary layer at  Mach 7.4 and 
compare the results with the experiments of Hopkins et d.'' No data on hypersonic flows over 
compression corners are known to the authqr; however, such a high-speed computation part of 
the Hermes workshopL6 will be performed in Section 4. 

2. ALGEBRAIC TURBULENCE MODELS AND UNSTRUCTURED GRIDS 

Linear algebraic turbulence models describe the Reynolds turbulent stress tensor ul as 

and the turbulent heat flux 4[ as 

where Pr, is the turbulent Prandtl number, usually assumed constant, and p1 is the eddy viscosity, 
which is an explicit function of the flow variables W ,  although this function is usually not local. 
More precisely, 

The value of pl at a given point depends on the flow variables at all the points at the same 
streamwise location. 

One of the main advantages of algebraic models, which makes them so popular, is their 
minimum requirement of computer time and storage. Indeed, when one uses an i , j  grid (Figure 2), 
the value of. the eddy viscosity on the grid, p i j ,  can be calculated cheaply since 

Figure 2 
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and in (4) many terms in ptiojo are common to all points at same streamwise location and so can be 
computed only once for each value of i,. 

Whether these desirable features can be conserved for triangular grids, which can be of type (a) 
but also of type (b) (Figure 3), is the question that must be answered. 

A triangular grid can be, and usually is, at least locally, not orthogonal to the wall. In our 
approximation7 the flow variables are linear on each triangle, and consequently we will look for 
nodal values of the eddy viscosity. The normals to the wall cannot, as in the rectangular structured 
case, be approximated by a sequence of nodes. There are two ways to calculate the field of eddy 
viscosities. The first is, for each node, to draw the normal to the wall passing through this node, to 
track all the elements it gets through (Figure 4) and then, using flow variables which are piecewise 
linear on this normal, to compute the eddy viscosity, which is valid only for the considered node 
since it is the only node with this streamwise location. This is very expensive, both in storage- 
since the list of the elements used for each node must be stored, unless it is recalculated at each time 
step, leading to an enormous CPU cost-and in CPU time-since a complete viscosity calculation 
on a normal must be performed for each node. 

The other way, which we will use, is to consider a discrete set of normals, namely the normals to 
the wall, 
elements 

passing through the middle of the wall edges (Figure 9, to compute and store the 
they get through, together with the barycentric co-ordinates of the middle of their 

(b) 

Figure 3 

Figure 4 
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intersection with each element, and then, at each time step, to use that information to compute the 
eddy viscosity on each normal. For each node it is then necessary to interpolate the values of the 
eddy viscosity from the two neighbouring normals (Figure 5). 

More precisely, the path, in terms of elements and edges, followed by the normal is computed 
through an algorithm first derived for characteristic methods,” taking into account all the 
geometrical possibilities: the normal hitting a node, coinciding with an edge, etc. This is done once 
at the beginning of the calculation; the result, which consists, for each wall edge, of a list of 
triangles and of the barycentric co-ordinates of the middle of the intersection of the normal with 
each triangle, is stored. The memory needed for this is equal to the number of wall edges multiplied 
by the average length of a normal (which is fixed by an a priori bound to the boundary layer 
thickness), times one integer (the number of the element) and two reals (the co-ordinates): 

Stol =(wall edges) x (average normal length) x (11 + 2R). ( 5 )  

To be able to perform the interpolation of the eddy viscosities from the normals to the whole mesh 
efficiently, one must also store some geometrical quantities. For each node in the boundary layer, 
one must store the number of the normal just on its left (say), its distance to this normal, plus one 
integer and one real to allow positioning on this normal, and one integral and one real to allow 
positioning on the normal on the right (Figure 6). 

Altogether, the memory needed to store the interpolation data is three integers and three reals 
for each of the nodes in the boundary layer: 

(6) Sto2 =(boundary layer nodes) x (31 + 3R). 

The global storage needed for the turbulence is 

Sto =(wall edges) x (average normal length) (11 + 2R) 

+(boundary layer nodes) (31 + 3R). (7) 
For example, a flat plate calculation using 100 nodes on the wall and an average of 25 nodes in the 
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boundary layer will require 90 kbytes of storage for the turbulence data, which is quite reasonable. 
The generation of these data takes about 40 s on a SUN workstation for this case. 

Once these data are generated, at each time step, the eddy viscosity is evaluated on the normals. 
This is now straightforward, since we have a normal represented by a set of points at which the 
flow properties, including the vorticity, are known: we are brought back to the structured 
orthogonal case. Then the interpolation is performed, which is also straightforward, since all the 
required coefficients are stored. Altogether, the calculation of the eddy viscosity when one uses the 
Baldwin-Lomax model takes less than 1.5% of the global CPU time for an implicit scheme and 
less than 4% for an explicit scheme. The evaluation of the eddy viscosity for the aforementioned 
case takes about 1.2 s on a SUN. 

The interpolation procedure described earlier is valid only when the solid body is convex. When 
it is not, a given point of the flow field is usually considered as influenced by two or more walls, and 
the influences are proportional to the inverse of the distance to the wall. A similar interpolation 
can be performed. The only added storage is: one real for each node of the boundary layer, 
representing the ratio of the influence of the eventual two relevant walls, and in Sto2 a boundary 
layer node must be counted twice if it is influenced by two convex components of the wall. This can 
be handled in a completely automatic and geometry-independent way, which is consistent with the 
finite element spirit. 

Although the geometrical part will be much more complicated, the same thing can be done in 
three dimensions. Normals are drawn starting from the wall faces, and then a spatial interpolation 
is performed between these normals. 
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3. HIGH-SPEED ATTACHED BOUNDARY LAYERS 

Turbulent boundary layers have been studied quite extensively in the last two decades and 
described in much detail." Many authors have proposed turbulent closure models to predict 
these boundary layers. The simpler ones, which will be our concern, are those which suppose the 
turbulent stress tensor -pu'u' to be proportional to the deformation tensor D: 

- PU'U' = 0, = ~ , D ( u ) ,  ( 8 )  

where p, is the eddy viscosity, which in algebraic models is a function of the flow field. 
Many eddy viscosity laws p, = pt(W) have been proposed over the years; the successful ones 

separate the boundary layer into an inner and an outer part which behave differently. In the inner 
part the main feature of the analysis is Prandtl's mixing-length theory, which predicts the eddy 
viscosity to be 

where IwI is the magnitude of the vorticity and 1 the mixing length. According to Prandtl's theory, 
in the fully turbulent regime 1 is proportional to the distance to the wall 

P t = d 2 i 4 ,  (9) 

1 = Icy. (10) 
To account for the laminar sublayer, this expression has to be modified in the near-wall region, as 
we will see later on. 

In the outer part of the boundary layer, it is generally admitted that the eddy viscosity is almost 
constant, although different values of this constant have been proposed. Cebeci and Smithlo 
suppose that 

P, = aue4, (1 1) 
where a is Clauser's constant, u, the speed at the edge of the boundary layer and di the 
incompressible displacement thickness. Again, this expression must be modified when approach- 
ing the edge of the boundary layer to account for the relaminarization of the flow. 

From these ideas, Cebeci and Smith proposed an eddy viscosity model defined as 

Pt=P1214 ,  I =  XYCl -exp (-Y/41, YGY,, (12) 

Pt =aUeJiY, y = [ 1 + 5-5(y/6)6] - l, Yay,, (13) 

A = A + p/J(pz,), A + = 26. (14) 

where 1 - exp (- y/A) is Van Driest's damping factor, which allows the representation of the 
laminar sublayer. A is the damping length, which according to Cebeci and Smith is given by 

y is Klebanoff's intermittency factor, which accounts for the alternately turbulent and laminar 
regime which occurs around the boundary layer edge. It has been established experimentally by 
Klebanoff." The crossover value y, is obtained by requiring the continuity of pt. 

This model has been tested extensively by its authors and shown to perform well in the 
incompressible, subsonic and transonic cases. Its main drawback is the necessity to first define and 
then calculate the boundary layer edge location and the properties of the flow at that point, in 
order to calculate the outer eddy viscosity. This is very difficult to do numerically with a 
reasonable accuracy. 

To overcome this difficulty, Baldwin and Lomax' proposed an alternative outer formulation 
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where 

F(y)=yIwl c 1  -exP(-Yl41, (16) 

6 = YMAXICKL, (17) 

CcpYMAXFMAX=Ue6i  (18) 

F M A x  is the maximum of F in a profile and YMAX is the value of y at which it takes place. They take 

where C,, and C K L  are constants determined by (17) and 

for theoretical profiles. York and Knight’j have shown that although the values Ccp= 1.2 and 
CK, = 0.65 could be used for low-speed flows, for high speed flows these values depended very 
strongly not only on the Mach number but also on the skin friction, making the model quite 
unreliable. Another difficulty of the model is that for high speeds the function F(y) does not exhibit 
a sharp peak as in the transonic case,’ making the determination of YMAx and F M A x  difficult and 
unreliable. 

As remarked before, the difficulty involved in using the Cebeci-Smith model comes from the 
necessity to find ue,  di and 6. We have 

It is clear that an inaccurate determination of 6 and ue = u,(6) will result in a very inaccurate value 
of the eddy viscosity. However, integrating (19) by parts, we have 

which for an attached flow is equivalent to 

For high-Reynolds-number flows, the vorticity Iw I always decreases sharply as the distance to the 
wall increases, even when the boundary layer experiences pressure gradients or interaction with a 
shock. The function ylw( also decreases quite quickly, as we will see in the numerical results, so 
that to calculate u,Si using (20), we only need a rough estimate of 6. We obtain this estimate 
through the variations of the Baldwin-Lomax function F:  we stop the integration in (20) at the 
pointy* where F(y*) is lower than FiAXB, where j? is an arbitrary constant. Since the function ylol 
decreases quite quickly, fi = 0 5  gives an accurate enough result and allows us to separate between 
the boundary layer and an eventual shock: 

To calculate the intermittency factor y ,  we need a more accurate estimate of 6. We define a 

(22) 

scaling length by 

Y a v =  1: Y2 I W I  d y / I r  Y I 01 dy. 

By comparison with the theoretical profiles of Sun and Childs,” it is found that 

6=ya~/cKl.? (23) 
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where C K L  is a constant which depends only slightly on the flow parameters (see Figure 7) and 
which can be taken to be 

C K L  = 045 (24) 
for all practical purposes. 

quantities: 

There is no significant difference between this and (14) for low Mach numbers because the density 
and molecular viscosity do not vary much, but for high speed flows there is a difference, and the 
Cebeci-Smith expression (14) is found to give better results. 

Finally, the model we are using for zero-pressure-gradient boundary layers is pt given by (12) in 

In the original Baldwin-Lomax model the damping length A was calculated using only wall 

A = A  + PW/J(PWTW). 
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Figure 7. Variations of CK,, with the flow parameters 
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Two high-speed flows over flat plates were computed and the results were compared with the 
experimental data of Hopkins et al.’ Unfortunately, high-speed measurements are quite 
scarce and only skin friction values were available. The first case is a flow at M ,  =7.4 and 
Realm= 8 x lo6. The plate has a length of 2 and a height of 0.35. The grid has 2960 nodes and 
5688 elements (Figure 8); it was generated by splitting the quadrangles of a 74 x 40 grid through 
their diagonal. The shock is captured at the leading edge. The free stream temperature is 
T, =973 K, while the temperature at the wall is T,= 31 1 K, which is about one-third of the 
adiabatic temperature. The molecular viscosity is given by Sutherland‘s law. 

Figure 8 
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Figure 9 shows the pressure coefficient, skin friction and heat flux versus the streamwise co- 
ordinate x. The capturing of the shock is done sharply, as one can see from the low deviation of the 
pressure coefficient (less than 1 YO) (the leading edge is at x =O).  The skin friction and heat flux have 
the expected behaviour, starting at very high values and decreasing sharply as the Reynolds 
number Re, = Re,x increases. The temperature of the wall is lower than the adiabatic tempera- 
ture, so that the heat is transferred from the flow to the wall. In Figure 10 the skin friction is plotted 
against the momentum Reynolds number and compared with the data of Hopkins et al. The 
agreement is very good except for the first point, at Re,=800, which is in transitional flow; no 
attempt to account for the transition has been made here. The streamwise variations of 8, u,ai and 
Y,, are also presented. It can be seen that they are very smooth, although a few discontinuities 
appear near the end of the plate, where the higher and coarser part of the grid plays a role. The 
crosswind profiles at x = 1-45 of the speed, the density, the turbulent and total shear stress and oy 
are presented in Figure 11. Although no experimental data were available for comparison, the 
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results are quite reasonable, at least qualitatively. The density profile exhibits a minimum short of 
the wall; this is consistent with the fact that the wall is colder than the corresponding adiabatic 
wall. This density peak induces a peak in the total shear stress because the eddy viscosity is 
proportional to the density. This behaviour is maybe not physical and is a drawback of the 
mixing-length theory. We have checked that it is not dependent on whether local or wall flow 
properties are used in the calculation of the damping length. As stated before, the function my 
decreases quite quickly when approaching the boundary layer edge and can be integrated easily 
with a reasonable accuracy. This computation took about 10 h of CPU time on a Gould, of which 
only about 3% was due to the evaluation of the eddy viscosity. The main overcost when compared 
to laminar calculations comes from the slower convergence to steady state. The resolution 
algorithm is a linearly implicit pseudo-time marching to steady state, in which the variations of the 
eddy viscosity with respect to time are not taken into account:'at time level n fhe viscosity is frozen 
and the algorithm is advanced by one time step, giving the flow properties at time n + 1 at which 
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the eddy viscosity is re-evaluated. This still allowed the use of a Courant number of 50 without 
encountering stability problems, but the number of iterations necessary to converge to steady state 
was about 50% more than in the laminar case, giving a 50% overcost. 

Another of the test cases of Hopkins et al., at a higher wall temperature, was computed. The 
geometry is the same as previously; the Mach number is M,=7.4, the Reynolds number is 
Re,/rn=3 x lo7, the free stream temperature is T,=58 K and the wall temperature is 
Tw=305 K. The grid used has 1170 nodes and 2204 elements; it was obtained by splitting 
a 30 x 39 grid into triangles. In Figures 12--14 the same results as for the previous case are 
presented. Because of the much coarser streamwise discretization, the results are less smooth and 
the agreement with experimental data is not as good as for the previous case. Nevertheless, the 
crror in the skin friction (about 8% at the maximum) is less than the estimated experimental error, 
so that the agreement can be considered reasonable. 
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4. ALGEBRAIC MODELS FOR HIGH-SPEED SEPARATED FLOWS 

It is well known that when the boundary layer becomes separated, both the Cebeci-Smith and the 
Baldwin-Lomax models give erroneous results because they rely on Prandtl's mixing-length 
theory, which is no longer relevant. This has been observed by many authors (see e.g. References 12 
and 13) and is perhaps the major drawback of these models. Some improvement can be obtained 
by using the Cebeci-Smith model and by modifying the Van Driest damping factor,I2 but the 
results are still not very good in and downstream of the separated zone. 

In 1986 G ~ l d b e r g ' ~  proposed a new algebraic k--E model to account for separated regions. His 
model is based on the following assumptions and observations on the separated region: the stress 
scale is given by the maximum shear stress in the separated layer, not by the wall stress; the shear 
layer has qualitatively the same turbulent structure when it is detached as when it is attached; and 
the length scale is the height of the separated region. Considering this and continuity arguments, 
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he proposed taking the kinetic energy of turbulence to be 

1 - exp c - 4(Y/Yb)z1 

1 -exp(-# ’ 
k = k b  

where the subscript ‘b’ refers to the backflow edge (defined by the point where the tangential speed 
is zero) and 4 is a parameter, found empirically to be 4 = 0.5. 

The turbulence energy dissipation is taken to be 

E = k3I2/yb (28) 
because the length scale is yb.  

For high-Reynolds-number flows k, can be taken to be (by analogy with the attached case) 

k b =  U , / f l ,  (29) 
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where C* =0.09 and 
4 = JFGK-2. 

Here - ( U ’ U ’ ) ~ ~ ~  is the maximum turbulent shear stress, which occurs in the detached layer, and 
must be provided by the model used outside the separation bubble. 

Altogether, the kinematic eddy viscosity is taken as 

The functionfaccounts for the laminar part in the vicinity of the wall. The constants A and B are 
found to be optimal at 

A = - (c;/2)9/5, B = (c;/2)3/5 - A ,  c; = 07. 

The function G is the Gaussian 

Goldberg tested his model by computing a supersonic flow over a compression corner and 
obtained impressive results, including the correct prediction of separation and reatta~hment.’~ 

To take separation into account, we will use the following blend of Cebeci’s and Goldberg’s 
models. In the attached regions we use the Cebeci model as described before, but replacing the wall 
shear stress in the Van Driest damping factor by the maximum shear stress in the profile to avoid 
an unphysical reduction of the eddy viscosity near separation and reattachment. 

For separated profiles, consistently with Goldberg’s hypothesis, we suppose that the shear layer 
is not qualitatively disturbed by the separation, so that we can take the eddy viscosity in it to be 
given by the Cebeci model, provided we use the distance to the backflow edge instead of the 
distance to the wall. In other words, pt is given by 

for yb < y < y, and by 

for y 2 y,, where 

U t s i =  y 101 dy, (35) 

(36) 

Iy: 
Yav = IY: Y2 I WI dy/Iy: Y I 01 dy. 

In the separation bubble, i.e. for y<yb, we use Goldberg’s model as described by (30). 
The implementation of this model is no major problem in our framework, since we have well 

defined normals to the wall on which we can easily compute y,, y* and the integrals (35) and (36) 
giving uedi and yav. The cost in terms of CPU time or storage is not significantly different for this 
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model as compared with the preceding one and remains very small (approximately 2% of the CPU 
time is used to compute the eddy viscosity). 

Separation usually occurs at points where the solid wall is not convex; at these points the 
influences of the two convex components on one given fluid point are taken into account and 
averaged according to 

where the subscripts 1 and 2 refer to the two convex components of the wall and d is the normal 
distance to the wall. 

The program automatically recognizes convexity defaults and performs the required aver- 
agings. The parts of the eddy viscosity depending on the different convex components are 
computed separately in order to allow vector processing; all this is completely geometry- 
independent assuming that the solid wall is locally convex. 

As a preliminary test of this model, a high-speed moderate-Reynblds-number flow over a 15" 
compression corner was performed. The grid is shown in Figure 15; it has 2782 nodes and 5345 
elements and was obtained by refining a Cartesian grid using an algorithm defined by Pouletty 
and Palmerio.zo*2' The shock is captured at  the leading edge and the corner is at 1.39 m from the 
leading edge. The Reynolds number is Re,/rn=4*95 x lo5, the Mach number is M, = 5, the free 
stream temperature is T,  = 83.6 K and the temperature of the wall is T ,  = 288 K. Figure 16 is a 
plot of the pressure. I t  can be seen that both the bow shock and the corner shock are captured 
neatly. In Figure 17 the pressure, skin friction and heat flux coefficients are plotted against the 
streamwise co-ordinate (the corner is at x =O). The boundary layer experiences a small separation 
in the vicinity of the corner, after which the skin friction quickly recovers high values, as expected. 
Figure 18 is a plot of the ratio pJp of the eddy viscosity to the molecular viscosity. It varies 
between 0 and 15 between the leading edge and the corner; the flow in this region is first laminar 

/- 

Figure IS 

Figure 16 



1138 P. KOSTAND 

I 
- 1  0 0.0 

X 
- 1 .o 0.0 

X 

-1.2 -0.6 0.0 0.6 
X 

Figure 17 

Figure 18 

and then transitional. After the corner pJp increases quickly to values around 100, indicating a 
fully turbulent flow. Figures 19, 20 and 21 are plots of the velocity vectors at the corner, after 
separation and near the outflow respectively. Figure 22 shows profiles of speed, density and total 
and turbulent shear stress at the corner (x=O). These profiles have the expected shape, although 
the discretization is maybe a bit coarse. 
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Figure 19 

Figure 20 

5. CONCLUSIONS 

We have shown that algebraic turbulence models can be used in conjunction with unstructured 
grids at no major overcost in terms of either CPU time or storage. The program remains 
completely geometry-independent, which is consistent with the spirit of finite elements and 
unstructured grids. 



d 
L 
b 

Figure 21 

I I 

0.0 0.4 0.8 

5 

4 

CI 

v 5 3  
>- 

2 

1 

0 

0.0 1 .o 2.0 
turbulent sheor stress L 1000 

5 

4 - 
v 5 3  
t 

2 

1 

0 

0.0 1 .o 2 .0  
totol sheor s t ress 1003 

\ 

0.0 0.2 6.4 
w * Y  

Figure 22 



ALGEBRAIC TURBULENCE MODELS 1141 

A practical way to use the Cebeci-Smith model has been proposed for both attached and 
separated flows; in the latter case Goldberg's modification has been used in the separated regions. 
The model has been shown to give accurate skin friction for high-speed zero-pressure-gradient 
boundary layers. A preliminary result for a separated flow is presented. 

The major problem remaining to be solved before the model can be trusted to give even coarse 
results on real configurations is the transition region. Whether an ad hoc representation by 
switching the model off if the predicted value of the eddy viscosity is lower than a critical value, as 
suggested by Baldwin and Lomax," would give a relevant result has not been investigated. More 
experimental data on transitional and/or separated high-speed flows are certainly necessary 
before answers can be given. 
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APPENDIX: NOMENCLATURE 

skin friction coefficient, 2zW/p,u2, 
heat flux coefficient, 2qW/p,u3, 
pressure coefficient, 2 ( p  - pw ) / p a  u', 
deformation tensor, D(u) = Vu + VuT -3V. u l  
total energy 
identity operator 
kinetic energy of turbulence 
Mach number 
Pressure 
Prandtl number, p /A  
heat flux 
free stream Reynolds number, pmuW/pm 
momentum thickness Reynolds number, peu,tl/p, 
temperature 
velocity vector, u = (u, u) 
component of the velocity tangent to the wall 
speed scale 

l P  1 

19 vector of conserved variables, 

co-ordinate tangent to the wall 
co-ordinate normal to the wall 
Clauser's constant, a =0.0168 
boundary layer thickness defined by u/u, = 0.99 

displacement thickness, 

incompressible displacement thickness 

isotropic part of turbulence energy dissipation 
heat conductivity 
molecular viscosity 
Von Karman's constant, K: = 0.4 

(1 - pu/p,u,) dy !: 
(1 - u/u,) dy 1: 
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V kinematic viscosity, p/p 
0 vorticity 
V gradient operator 
V = divergence operator 

Subscripts 

b at backflow edge 
e at boundary layer edge 
1 at streamwise position iAx 
j at crossflow position j A y  
t turbulent 
W at wall 
co free stream conditions 

Superscripts 

fluctuating quantities 
averaged 

T transpose 

- 
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